rural development Archives - S M Sehgal Foundation https://www.smsfoundation.org/tag/rural-development/ Fri, 15 Sep 2023 06:28:49 +0000 en-US hourly 1 https://wordpress.org/?v=6.5.5 Tryst with Destiny: “Everything else can wait, but not agriculture”~Prime Minister Nehru https://www.smsfoundation.org/tryst-with-destiny-everything-else-can-wait-but-not-agriculture-prime-minister-nehru/?utm_source=rss&utm_medium=rss&utm_campaign=tryst-with-destiny-everything-else-can-wait-but-not-agriculture-prime-minister-nehru https://www.smsfoundation.org/tryst-with-destiny-everything-else-can-wait-but-not-agriculture-prime-minister-nehru/#respond Tue, 27 Jul 2021 11:06:19 +0000 https://www.smsfoundation.org/?p=5893 by Dr. Suri Sehgal In 2016, the Prime Minister Narendra Modi-led government set a highly ambitious target of Doubling Farmers’ Income (DFI) by 2022. An inter-ministerial committee was set up in April 2016 to recommend strategies to achieve this goal. They submitted the report to the government in September 2018 with its strategy for doing so. … Continue reading "Tryst with Destiny: “Everything else can wait, but not agriculture”~Prime Minister Nehru"

The post Tryst with Destiny: “Everything else can wait, but not agriculture”~Prime Minister Nehru appeared first on S M Sehgal Foundation.

]]>
by Dr. Suri Sehgal

In 2016, the Prime Minister Narendra Modi-led government set a highly ambitious target of Doubling Farmers’ Income (DFI) by 2022. An inter-ministerial committee was set up in April 2016 to recommend strategies to achieve this goal. They submitted the report to the government in September 2018 with its strategy for doing so. The committee made some sound recommendations as follows:

“Doubling farmers’ income by 2022 is quite challenging, but it is needed and is attainable. The three-pronged strategy focused on (i) development initiatives, (ii) technology, and (iii) policy reforms in agriculture. The rates of increase in the sources underlying growth in output need to be accelerated by 33 percent to meet the goal. Research institutes should come with technological breakthroughs for shifting production frontiers and raising efficiency in the use of inputs. Evidence is growing about the scope of agronomic practices such as precision farming to raise production and the income of farmers substantially. Similarly, modern machinery such as the laser land leveler, precision seeder and planter, and practices like SRI (system of rice intensification), direct seeded rice, zero tillage, raised bed plantation, and ridge plantation allow technically high-efficient farming. However, these technologies developed by the public sector have very poor marketability. They require strong extension for the adoption by farmers. R&D institutions should also include in their packages grassroots-level innovations and traditional practices that are resilient, sustainable, and income enhancing. NITI Policy Paper No. 1/2017”

Unfortunately, the results so far have been marginal in spite of good monsoon rains.

The table below gives average rainfall over the past five years. LPA indicates long period average.

2017: normal (98% LPA)
2018: deficient (86% LPA)
2019: above normal (110% LPA}
2020: above normal (109% LPA)
2021: normal 98% per forecast of IMD (India Meteorological Department)

In my humble opinion, it will take longer, perhaps another decade or more, to come close to achieving DFI. The only way I can envision to double farmers’ income in five years would be to provide cash handouts equal to each farmer’s average income over the past five years, and gradually reduce that amount every year as the farmer’s income incrementally increases.

Historical perspective

In 1971, when conflicts in Pakistan increased, millions of Bengal refugees from East Pakistan took shelter in India. But India had no capacity to receive, house, and feed millions of refugees. The foreign minister of India appealed to the international community for assistance. In desperation, Prime Minister Indira Gandhi came to the US and requested help. The US government stood by its old ally, Pakistan. US President Richard Nixon and National Security Advisor Henry Kissinger feared Soviet expansion into South and Southeast Asia and failure of their strategy of opening China to US access.

Pakistan had far-superior military equipment as compared to India. Indian jet fighters supplied by the Soviet Union were no match for US aircraft in F series supplied to Pakistan. On the evening of December 3, 1971, the Pakistan Air Force launched surprise preemptive strikes on eleven airfields in northwestern India to try to crush the Indian Air Force. It came to be known as Operation Chengiz Khan. In a radio address to the nation the same evening, Prime Minister Gandhi held that air strikes were a declaration of war, and the Indian Air force responded with air strikes that same night, attacking Pakistan. This expanded to massive retaliatory air strikes the next morning. At Murid airbase in Pakistan, the Indian Air Force destroyed 5 F-86 aircraft on the ground, which shook up the Pakistani generals who considered themselves invincible.

The air action marked the official declaration of the Indo-Pakistan War. “Crush India” became a standard feature of propaganda throughout Pakistan.

Earlier in April of the same year, Prime Minister Indira Gandhi had asked the Indian Army Chief General Sam Manekshaw if he was ready to go to war with Pakistan. According to Manekshaw, he refused. He then said he could guarantee victory if she would allow him to prepare for the conflict on his terms, and set a date for it. Gandhi accepted the conditions. In reality, Gandhi was well aware of a hasty military action, but she needed to get military views to satisfy her hawkish colleagues and public opinion, which were critical of India’s restraint.

The situation was quite unlike what happened during the invasion by the Chinese in the high-altitude area of Kashmir in 1962. The Indian troops were unprepared to defend the border. They had no heavy winter uniforms for the arctic weather conditions of the high Himalayan Mountains.

Only a few weeks earlier, the Prime Minister of China had visited India as an official guest of Nehru, and he was a given a red-carpet treatment. India had been giving full support to China. All over India were marches with children waving red flags and shouting, “Chini. Hindi. Bhai. Bhai” (Chinese and Indians are brothers). Nehru was an intellectual idealistic, and he had underestimated Chairman Mao Tse-tung’s hold on the communist party. The position of Prime Minister Zhou Enlai was important, but Chairman Mao ruled China with an iron first. India was not prepared for a war with the Chinese, nor was the military.

Prime Minister Nehru ordered the generals to go drive the invaders away, and the generals blindly followed Nehru’s order. That culminated in a humbling defeat for India. The irony of the whole situation was that President Nixon, Secretary of State Kissinger, and communist China supported military dictatorship in Pakistan; and the communist Soviet Union supported democratic India in the war.

In 1971, India defeated Pakistan in just a fortnight because of excellent planning and a winning three-prong strategy. Reaction to defeat and dismemberment of half of Pakistan was shocking among top military and civilians in Pakistan.

East Bengal declared independence on March 26, 1971, and the country came to be known as Bangladesh. India returned all Bangladesh territory to Bangladesh that India won in the 1971 war, and tried to repatriate refugees back to Bangladesh. But the refugees preferred to stay in India.

THE LESSON from this long story is that good planning followed by an efficient execution leads to success, whereas blue-sky projects and impractical strategies lead to failure. Jumping into something without having a clear winning strategy leads to failure irrespective of the best efforts of the implementers.

India’s distinguished experts and scientists must give their frank and honest opinions to the honorable prime minister, just as India’s General Sam Manekshaw did to Prime Minister Indira Gandhi in 1971.

Food Shortages

Before the partition of India in 1947, the Punjab State always had a surplus in food and agricultural commodities. But after partition, the situation changed dramatically, and food became very scarce in India; even in Punjab, wheat flour, sugar, and fuel were rationed.

As a young school boy in Amritsar, I used to stand in endless long lines (from the latter part of 1947 and for a couple of years) to get permits to purchase food or fuel to buy meager quantities of ration. Jawaharlal Nehru, the prime minister of free India, came to Amritsar in 1948 or so. My father, being a Congress Party activist, had free access to where the prime minister was staying. I frequently went with my father to the guesthouse where Nehru stayed and sat on the cot with Nehru from where he addressed small gatherings in his room. I used to attentively listen to what he was saying, including the difficulties people were facing in finding food or fuel. Though I missed school quite a bit standing in lines to get permits to buy food while in high school (equivalent of middle school in US), I still scored well in my final exams (first class/ “A” average in the US).

Back then, the US had a glut of commodities like wheat and corn, and was known worldwide for its generosity for providing food aid to the countries in need of food, either free under “food as aid,” or against payment under the PL 480 act. Prime Minister Nehru visited the US in 1949 at the invitation of President Truman. He received a big welcome as a prime minister of the largest democracy in the world. In a meeting with the president, he hinted to Truman that India was in critical need of food. Truman was receptive to his request, and the US finally agreed to supply food to India.

In spite of imports from the US year after year, the food shortages persisted. At this juncture, Prime Minister Nehru made his famous statement, “Everything else can wait, but not agriculture.” India became very conscious of the need to create food security. But the shortages persisted. Again in the sixties after two years of severe drought, India had to ask for large quantities of food from the US under the PL-480 program. Now Indira Gandhi was the prime minister and Lyndon B Johnson was the US president. This was when India made a big push to become self-sufficient in food. USAID and the Rockefeller and Ford foundations greatly helped in this effort, and that period in India came to be known as “ship-to-mouth era.”

Seeing firsthand the food scarcity and near-famine conditions in India left a strong impression on me. I made up my mind that I wanted to study agriculture, but my parents were bitterly opposed to it. They wanted me to be a medical doctor or an engineer, the two professions that were most respected in India. Agriculture was considered at the bottom of the list. So I had to find a way not to get admission into medical school. I let my grades slip in premed, so that I was not qualified for admission to the medical school. Now I was a “bad boy” in the eyes of everyone, including my parents, and I would have to prove later that I could make a living in agriculture.

My dilemma: what to study?

The choices locally were limited. My parents could not afford to send me to any out-of-town school. My only option was to enroll in botany (honors) or horticulture. I decided to enroll in Botany Honors School of the Punjab University, which turned out to be a blessing.

After I finished my Honors School, securing first class first (equivalent to A+ average in the US), I went to Delhi to do an advanced degree in agriculture at IARI. I applied for a scholarship offering Rs 150/mo. ($30), which came if I was admitted to the graduate school. But I did not get in, which turned out to be another blessing! Biding my time, I took a teaching job at Deshbandhu College for Rs 250/month ($50).

On a visit to IARI, I learned from a US Rockefeller scientist, Dr Ernie Sprague, that a team of three agricultural scientists had visited India in 1952/53 to advise the government (GOI) on how to improve India’s agriculture. Among them was Prof. Paul C. Mangelsdorf of Harvard University. He was a member of the team of three who, after the Green Revolution, became known as “three musketeers.” Prof. Mangelsdorf was a consultant to the Rockefeller Foundation (RF). RF was recognized as an eminent philanthropic organization that had sponsored the team’s trip to India. RF had initiated their first agricultural project in Mexico, which later came to be known as CIMMYT at the request of Henry A, Wallace, secretary of Agriculture and vice president of the US in President Franklin D Roosevelt’s (FDR) administration.

While at Deshbandhu College, I corresponded with Prof Mangelsdorf. He guided me on how to apply to Harvard University in Cambridge, MA. I was very lucky to get admission due to my good grades. After four years at Harvard under the brilliant mentorship of Professor Mangelsdorf, I got my PhD in plant genetics. And later, I served for twenty-four years in the company called Pioneer Hi-Bred International that Henry A. Wallace had founded. He visited my research farm in Jamaica in 1965, and gave me many useful tips on maize breeding.

The 4 S’s: a winning formula for agricultural productivity: Green Revolution

Much has been written on the Green Revolution worldwide, so here I will focus on a few facts that are not well known.

Increasing agricultural productivity requires 4 basic elements: SEED, SOIL, SEASON (rain plus supplemental irrigation, and STAND (high plant density of plants in the field)

After Dr Swaminathan had identified the dwarf varieties that were looking very promising among the many sent by Borlaug to him, Professor M S Swaminathan, invited Borlaug to visit India and observe the wheat plots with him. Observing the performance of high-yielding varieties (HYVs), Borlaug would have most likely urged the distinguished professor to follow principle of 4 S’s to get maximum yield in the shortest timeframe—which is the traditional method used by farmers for centuries—except Borlaug urged farmers to combine the good seed with balanced nutrition and soils rich in organic content, and irrigate HYV fields with the supplemental irrigation. I was not privy to their conversation, but a conversation along these lines would have been quite plausible .

The enabling technologies like soil, irrigation, and the areas of Punjab, Haryana, and western UP were identified by the scientists in India. The key policy decisions at every level were made and implemented promptly. Later the lands where yields went up dramatically were called Green Revolution lands. Professor Swaminathan knew the can-do attitude of the Punjabi and Haryanvi farmers, and he was confident that they would deliver if supported with the technologies Dr Borlaug recommended.

Professor Swaminathan arranged Borlaug’s meeting with the Honorable Minister of Agriculture, Chidambaram Subramaniam; and the same day, the three of them met Honorable Indira Gandhi, Prime Minister of India, stating that important policy decisions on enabling technologies of the 4 S‘s must be made. And she agreed.

India was all set, and the wheels of the Green Revolution started churning. Dr Swaminathan was the engine that drove the revolution along with his colleagues and the inspiration of Dr Borlaug. Wallace and Brown (my mentor after joining Pioneer in 1963) used the expression “Small Gardens and Big Ideas” in their famous book, Corn and Its Early Fathers. Their expression is rightly applicable to Dr Borlaug’s work.

Since India had handsomely benefited from the Green Revolution, which saved India from the brink of starvation and brought it to self-sufficiency. India is rightly proud of this achievement. In recognition of his outstanding effort to save India from starvation, Prime Minister Indira Gandhi nominated Dr Borlaug for a Nobel Peace Prize, which he won. (There is no Nobel Prize in agriculture.)

Currently in India, seed access by farmers  is haphazard, as there are no organized input supply chains; Indian soils are loaded with chemicals with very little organic matter, and balanced fertilizer application by most farmers is lacking; monsoon is becoming shorter and shorter, and more and more erratic (floods or droughts). About 60 percent of the agriculture area in India is rain-fed, and only 40 percent is irrigated. This unfortunate situation calls for a winning strategy.

My sincere request to our eminent experts on DBI is to follow the time-honored principle of 4 S’s to achieve doubling of income in five years. Over time, the 4 S’s have been included by the DFI committee in their recommendations, but the implementation must be streamlined to be effective. Streamlined implementation of the 4 S’s will set the doubling of farmer’s income on a right and achievable path.

The questions to ask

If Mexican wheats had not come to India, would there have been a Green Revolution? The Mexican wheat, or the high-yielding varieties (HYVs) of wheat, were developed by the US scientist Norman Borlaug of Iowa, and his team based in Mexico. Similarly the high-yielding (HYVs) of rice that were introduced into India from the Philippines were developed by the US scientists, Dr Peter Jennings and Dr Henry Beachell, with their team based in the Philippines at International Rice Research Institute (IRRI).

Besides the Green Revolution, for which India is grateful to the scientists from the USA for developing HYVs of wheat in Mexico and HYVs of rice at IRRI in the Philippines, the dwarf genes for wheat (that made Mexican dwarf HYVs of wheat possible) came from Japan and were sent to Mexico at the request of Borlaug. The dwarf genes, that made HYVs of rice possible, came from Taiwan where IRRI scientists got them in order to introgress dwarf genes into other varieties. Hybrid rice technology originated in China from where it was transferred to IRRI in the Philippines, and from there it spread to other countries, including India. The basic science of heterosis and application of heterosis breeding originated in the US. Hybrid corn was the first product. Now the application of this revolutionary technology to a host of agronomic and vegetable crops is worldwide, including India.

Biotechnology

To my knowledge, no revolutionary technology is on the horizon like HYVs or hybrids that will double or triple the yield in five years. Agbiotech and other farming technologies can bring incremental improvements in productivity and no more.

Although seed and agbiotech businesses have been good to me, I am not a fan of agbiotech, especially recombinant DNA technology for developing countries. The development costs are horrendous. And regulatory approval processes can be very lengthy and not worth the effort in my opinion. For select crops like cotton, it has been effective, but after it, what? Maybe Bt Brinjal (eggplant) the cultivation of which is yet to be approved by the regulatory authorities of India.

Bt technology for cotton came from the US, and the Bt gene was introgressed to locally adapted cotton varieties by the private sector seed industry.

Biotech is a good science and sound technology, and genetically engineered crops (GMOs) are widely grown in North America and Latin countries of South America where farms are large and farming systems are different. However, in India, the farms are small (average 1.1 ha) and the farmers are resource-poor. Agbiotech is effective but not economically beneficial for developing countries like India. It is cheaper to license-in the technology than to develop it indigenously. (I am referring to agbiotech, not pharma biotech). Allow the public sector to dabble in it for the long term. Other modern technologies are becoming very popular in rich countries, which include robotics, global positioning systems (GPS), drones, etc., and are being rapidly adopted by the farmers in the developed world. India must be selective in picking a few technologies, such as drip irrigation, laser leveling, solar pumps, etc., and adapting them to the domestic needs of India’s very small farm size, and the resource-poor farmers. S M Sehgal Foundation (SMSF) based in Gurugram is doing this successfully.

The Indian Council of Agricultural Research (ICAR) and the Indian Agricultural Research Institute (IARI), the two premier agricultural institutions of India, and the Dept. of Biocenology (DBT) must engage in some introspection, reflect on their accomplishments, and ask what innovative technologies have actually come out from any of these institutions over the past fifty years that have been adopted in India, and/or outside India? And what are the future targets in agriculture by these Indian institutes (deliverables and outcomes)?”

Meanwhile, focus on a proven winning strategy in India—streamline an aggressive implementation of the 4 S’s to double the income of India’s farmers within five years.

Also Read the second part of the article.

Enhancing Food Security through Good Seeds, Soil, Water Efficiency, and Empowerment (Tryst with Destiny Part 2)

(Dr. Suri Sehgal, has PhD, leading international crop scientist; chair of the Board of Trustees of S M Sehgal Foundation and Sehgal Foundation, USA; founder and chair of Hytech Seed, India; founder of the William L. Brown Center for Economic Botany at the Missouri Botanical Garden, St Louis, Missouri, and emeritus trustee of the Garden.)

The post Tryst with Destiny: “Everything else can wait, but not agriculture”~Prime Minister Nehru appeared first on S M Sehgal Foundation.

]]>
https://www.smsfoundation.org/tryst-with-destiny-everything-else-can-wait-but-not-agriculture-prime-minister-nehru/feed/ 0
Technology makes life easier https://www.smsfoundation.org/technology-makes-life-easier/?utm_source=rss&utm_medium=rss&utm_campaign=technology-makes-life-easier https://www.smsfoundation.org/technology-makes-life-easier/#respond Fri, 02 Apr 2021 11:36:39 +0000 https://www.smsfoundation.org/?p=5301 By Sonia Chopra Technology is ever-changing. Digital communication technologies connecting people across the globe have become easier and faster. Platforms such as Zoom, Room, Google hangouts, Microsoft teams, WebEx, and many others are buzzing virtual world spaces to connect and share. Social media platforms such as Twitter, WhatsApp, Facebook, Instagram, Snapchat, FaceTime, and all other … Continue reading "Technology makes life easier"

The post Technology makes life easier appeared first on S M Sehgal Foundation.

]]>

By Sonia Chopra

Technology is ever-changing. Digital communication technologies connecting people across the globe have become easier and faster. Platforms such as Zoom, Room, Google hangouts, Microsoft teams, WebEx, and many others are buzzing virtual world spaces to connect and share. Social media platforms such as Twitter, WhatsApp, Facebook, Instagram, Snapchat, FaceTime, and all other high-end applications on smartphones have also shown us how technology has changed the world.

With technological advancements, internet connectivity and bandwidth have also improved. From a time when people faced problems in sending and receiving messages via mobile phones due to internet speed, even internet technology has come of age. Even people in rural areas are now connected with the world through smartphones. When the COVID-19 pandemic and lockdown halted work and life, technology served as a significant relief as people were in a position to do many things virtually. Official and business meetings were held using various online platforms, education happened online, and so did other utility services.

THE IMPACT OF DIGITAL INDIA ON RURAL DEVELOPMENT

Launched in 2015, a dream project of the Indian government, Digital India was to transform rural India into a digitally empowered society by gaining digital access to government services, and dissemination of information. The visionary step of the government was to motivate and connect rural India to a knowledgeable world through a backbone of a high-speed internet.

The vision of digital India was threefold –

  • Deliver governance and services on demand
  • Enable the digital empowerment of all citizens
  • Create an infrastructure as a utility for every citizen

Besides the creation of manufacturing infrastructure, the Digital India Program was conceptualized on nine pillars and in the rural context. The key areas were:

  • E-governance. Access to the database, use of Aadhaar, online repositories, integration platforms through public grievance redressal, etc.
  • E-Kranti. Electronic delivery of services like e-healthcare, financial inclusion, e-education, information to farmers, justice, etc.

The impact on rural India has been slow, yet steady. In such a large and diverse country, some impact areas have been:

E-Governance. Projects such as e-District, Common Services Centers (CSCs), Kisan Call Centres, Jagriti E-Sewa, Mobile Seva, etc., have led to better service delivery, transparency and accountability, and improvement in government efficiency. The empowerment of people through information, although slow, is definitely spearheading rural India to contribute to the next phase of growth in the economy.

Education. Initiatives such as Pradhan Mantri Gramin Digital Saksharta Abhiyaan PMGDISHA have begun with the target of making six crore people digitally literate in rural India. Rural education in India is crucial for the next phase of growth, and projects like SWAYAM are spearheading e-education by offering Massive Online Open Courses (MOOCs). Swayam provides a platform that facilitates hosting all courses taught in classrooms, starting from the 9th standard, till post-graduation, with an open access.

Also Read – Urban And Rural Development

Financial Inclusion. Financial inclusion with the help of Digital India, has been accelerated through schemes such as Digital India, UPI payments, direct benefit transfer, Rupay, etc. The Jan Dhan–Aadhaar–Mobile has positively affected the banking sector in the country. The benefits have percolated to the rural areas, and the financial literacy has significantly improved since the rural population got integrated into the system. Direct Benefit Transfer (DBT) has created a major financial impact for the rural communities by plugging leakages and accelerating the distribution of pensions, subsidies, and other benefits under various schemes. All this has led to a positive economic outlook in rural India.

Adverse situations reshape the world and cause turning points that bring about vital new lessons. The social sector welcomed and adopted virtual and remote working models to an extent, and, as the lockdown relaxed, face-to-face conversations and on-ground activities resumed on a smaller scale.

Digital literacy

As the pandemic accelerated, India witnessed one of the highest adoptions of digital technologies and solutions by health and human services (HHS) organizations among the countries surveyed, according to a new survey from EY and Imperial College London’s Institute for Global Health Innovation. Fifty-one percent of respondents in India had increased their use of digital technologies and data solutions since the outbreak of the pandemic. (Mint Newspaper, March 18, 2021).

Virtual platforms for facilitating webinars, conferences, training, and workshops are likely here to stay. Information technology solutions help send bulk invites to webinars and ensure the emails reach the right people at the right time. Robust contacts/customer database software has replaced spreadsheets to maintain data. Organizations are switching to customer relationship management software for efficient record management and to nurture relationships with the customers/stakeholders. Some popular software includes ZOHO CRM, Vtiger CRM, Hubspot CRM, and many more.

S M Sehgal Foundation has been using Zoho CRM for four years. In the pandemic, the software helped to send mass emails to database contacts. Its built-in email templates are convenient for sending out event schedules. An important outcome is that CRM technology provides the analytics that helps to constantly refine email communication with organization contacts. CRM software provides a complete picture of how email communications fare and also integrates social media platforms, which can be linked to CRM to generate leads for the organization.

FAQs

The Digital India Program was conceptualized on nine pillars and, in the rural context, the key areas include e-governance and e-Kranti etc. Read more

Education is one of the key contributors in social development and keeping pace with technological advancements can go a long way in bridging the urban-rural divide. Rural education has placed emphasis on enrolments, reducing dropout rates in school, and adequacy of physical infrastructure and tends to ignore the other soft aspects of digital awareness and skill development.
Read more

Digital communication technologies refer to communication that makes use of technology such as email, phone, video conferencing, chats and messaging, and others.
Read more

The post Technology makes life easier appeared first on S M Sehgal Foundation.

]]>
https://www.smsfoundation.org/technology-makes-life-easier/feed/ 0
Villagers march to restore nature’s lost glory https://www.smsfoundation.org/villagers-march-to-restore-natures-lost-glory/?utm_source=rss&utm_medium=rss&utm_campaign=villagers-march-to-restore-natures-lost-glory https://www.smsfoundation.org/villagers-march-to-restore-natures-lost-glory/#respond Fri, 26 Sep 2014 04:59:38 +0000 https://www.smsfoundation.org/?p=1516 By Jitendra Singh Khangarot The water problem in the villages close to Rajasthan’s Sariska forest emerged around a few decades back when villagers resorted to cutting of trees for livelihood. With this, what was once a dense forest gradually changed into a site for illegal mining. Besides destroying the natural beauty of the place, these … Continue reading "Villagers march to restore nature’s lost glory"

The post Villagers march to restore nature’s lost glory appeared first on S M Sehgal Foundation.

]]>
By Jitendra Singh Khangarot

The water problem in the villages close to Rajasthan’s Sariska forest emerged around a few decades back when villagers resorted to cutting of trees for livelihood. With this, what was once a dense forest gradually changed into a site for illegal mining. Besides destroying the natural beauty of the place, these activities also rendered the area water scarce with the water table dropping with each passing day.

Sehgal Foundation in collaboration with Coca Cola India Foundation is working in the area to improve the challenging environmental conditions by sensitizing people to conserve water and increase groundwater levels by installing water harvesting structures.

Villagers, including the members of Samra panchayat, came together for the cause. They gathered to organize Vriksh Raksha Yatra — a rally for creating awareness on protection and conservation of Mother Nature. The villagers took part in an awareness march from Hameerpur to Natata villages of Alwar, Rajasthan, during which they tied rakshasutra (safety band) on peepal (sacred fig) trees and took a pledge to save them. The group raised slogans to plant more trees and talked on the relationship between environment and mankind.

Chajuram, an active member of Village Development Committee, said, “If a community realizes what the problem is, it will take corrective measures. We need to plant more trees and impose a complete ban on cutting of trees. A penalty on cutting trees is also being considered, if someone goes beyond the ban.”

The post Villagers march to restore nature’s lost glory appeared first on S M Sehgal Foundation.

]]>
https://www.smsfoundation.org/villagers-march-to-restore-natures-lost-glory/feed/ 0